A comparative and integrative approach identifies ATPase family, AAA domain containing 2 as a likely driver of cell proliferation in lung adenocarcinoma.
نویسندگان
چکیده
PURPOSE To identify genetic changes that could drive cancer pathogenesis in never and ever smokers with lung adenocarcinoma. EXPERIMENTAL DESIGN We analyzed the copy number and gene expression profiles of lung adenocarcinomas in 165 patients and related the alterations to smoking status. Having found differences in the tumor profiles, we integrated copy number and gene expression data from 80 paired samples. RESULTS Amplifications at 8q24.12 overlapping MYC and ATAD2 were more frequent in ever smokers. Unsupervised analysis of gene expression revealed two groups: in the group with mainly never smokers, the tumors expressed genes common to normal lung; in the group with more ever smokers, the tumors expressed "proliferative" and "invasive" gene clusters. Integration of copy number and gene expression data identified one module enriched in mitotic genes and MYC targets. Its main associated modulator was ATAD2, a cofactor of MYC. A strong dose-response relationship between ATAD2 and proliferation-related gene expression was noted in both never and ever smokers, which was verified in two independent cohorts. Both ATAD2 and MYC expression correlated with 8q24.12 amplification and were higher in ever smokers. However, only ATAD2, and not MYC, overexpression explained the behavior of proliferation-related genes and predicted a worse prognosis independently of disease stage in a large validation cohort. CONCLUSIONS The likely driving force behind MYC contribution to uncontrolled cell proliferation in lung adenocarcinoma is ATAD2. Deregulation of ATAD2 is mainly related to gene amplification and is more frequent in ever smokers.
منابع مشابه
ATPase family AAA domain-containing 3A is a novel anti-apoptotic factor in lung adenocarcinoma cells.
AAA domain-containing 3A (ATAD3A) is a member of the AAA-ATPase family. Three forms of ATAD3 have been identified: ATAD3A, ATAD3B and ATAD3C. In this study, we examined the type and expression of ATAD3 in lung adenocarcinoma (LADC). Expression of ATAD3A was detected by reverse transcription-polymerase chain reaction, immunoblotting, immunohistochemistry and confocal immunofluorescent microscopy...
متن کاملاثر مورفین بر تکثیر سلولهای سرطانی ریه (A549)
Background and Aim: Morphine is frequently used for patients suffering cancer in their end stages to relive pain. However, there are conflicting reports suggesting morphine to promote tumor growth and reduce survival rate in cancerous animal models or induce necrosis and apoptosis in the tumor cells. In the present study, we studied the effect of morphine on proliferation of human lung adenocar...
متن کاملA review of the role of dopamine receptors and novel therapeutic strategies in non-small cell lung cancer (NSCLC)
Lung cancer is a very aggressive and most deadly cancer in both men and women. Lung cancer is divided into two types of small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). NSCLC is divided into 3 subgroups: adenocarcinoma (AC), squamous cell carcinoma (SqCC) and large cell carcinoma (LCC). Dopamine is involved in controlling motions, cognition, emotions, memory and reward mech...
متن کاملGene Regulation Network Based Analysis Associated with TGF-beta Stimulation in Lung Adenocarcinoma Cells
Background: Transforming growth factor (TGF)-β is over-expressed in a wide variety of cancers such as lung adenocarcinoma. TGF-β plays a major role in cancer progression through regulating cancer cell proliferation and remodeling of the tumor micro-environment. However, it is still a great challenge to explain the phenotypic effects caused by TGF-β stimulation and the effect of TGF-β stimulatio...
متن کاملIntegrative CAGE and DNA Methylation Profiling Identify Epigenetically Regulated Genes in NSCLC.
Lung cancer is the leading cause of cancer-related deaths worldwide. The majority of cancer driver mutations have been identified; however, relevant epigenetic regulation involved in tumorigenesis has only been fragmentarily analyzed. Epigenetically regulated genes have a great theranostic potential, especially in tumors with no apparent driver mutations. Here, epigenetically regulated genes we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 18 20 شماره
صفحات -
تاریخ انتشار 2012